DEVELOPMENT OF A STREAMLINED MOLECULAR ASSAY THAT DETERMINES BOTH ALLELE AND EXPANDED REPEAT SIZE IN DMPK FOR MYOTONIC DYSTROPHY 1

<u>Bradley Hall</u>, Jon Kemppainen, Jacob Wisotsky, Kristen Culp, Gary J Latham and Eran Bram Asuragen, Inc., Austin, TX USA

SUMMARY

- Triplet repeat CTG expansions in the *DMPK* gene are causative for Myotonic Dystrophy Type 1 (DM1).
- Current laboratory workflows require both PCR and Southern blot (SB) analysis to adjudicate DM1 repeat status.
- We developed a single-tube assay based on AmplideX[®] PCR technology that resolves up to 200 CTG repeats and flags larger expanded alleles without the need for SB analysis.
- The prototype DM1 PCR/Capillary Electrophoresis (CE) assay unifies gene-specific and repeat-primer designs in a streamlined procedure to generate sensitive and specific results across all categories of expanded alleles.

INTRODUCTION

Myotonic dystrophy type 1 (DM1) is an autosomal dominant disease characterized by >50 CTG repeats in the 3' UTR of *DMPK*¹. In the absence of family history, early DM1 symptoms are typically mild, overlapping with other disorders (e.g. baldness, myalgia, cataracts) and leading to under- or misdiagnosis of patients¹. The introduction of molecular testing suggests a disease prevalence as high as ~1:2000². DM1 testing currently requires a combination of two independent PCR reactions and SB analysis that can take several days. PCR alone typically fails to amplify expansions >100 repeats, and allele drop-outs are indistinguishable from homozygous samples³. The method and results described here enlist Asuragen's AmplideX PCR technology to enable accurate sizing of *DMPK* alleles with resolution up to 200 repeats in a single-tube assay.

MATERIALS AND METHODS

Genomic DNA (gDNA) was isolated from 14 matched buccal and whole blood samples of presumed healthy donors (Asuragen) using QIAamp DNA Blood Mini kit (Qiagen). Cell-line materials included samples from the Coriell repository (16 DM1-positive including 10 previously verified genotypes³ and 2 normals) and 11 additional normal cell-lines (Asuragen). gDNA (40 ng) was amplified using prototype PCR reagents (Asuragen) by two different operators on different days. FAM-labeled amplicons were resolved on a 3500xL Genetic Analyzer (Thermo Fisher Scientific) CE instrument using POP-7[™] polymer, with 2.5 kV, 10 sec injection and 40 min run time. Genotyping was achieved following analysis using a ROX 1000 size ladder (Asuragen) and a fourpoint calibrator.

Figure 3. CE traces display clear differentiation of normal and expanded alleles while simultaneously identifying repeat mosaicism. (A) Normal alleles have a characteristic drop in the RP profile whereas **(B)** expanded alleles have a characteristic expansion of the RP profile and identify mosaicism based on the GS profile where previously reported assays could not (*)^{3,4}. Repeat counts are provided above the dominant peak with an inset of the zoomed trace.

Table 1. The assay demonstrates repeatability across different operators and days. For Coriell samples, the RP strategy flagged all expanded samples within 1 repeat unit for all samples tested in both runs except NA03991, which agreed within 2 units. Samples were concordant with published literature^{3,4} and in two cases identified additional minor alleles not previously observed (*). For whole blood, all samples were successfully genotyped with *DMPK* PCR/CE reagents with identical results between replicates and with buccal samples from the same individual; repeat sizes ranged from 5 to 26 CTGs within an average of 0.02 ±0.20 repeats between runs. There were 5/25 (20%) homozygous samples, consistent with published screening studies⁵. No assay failures were observed.

				16.1 2										
Coriell DN				Kalman ^a		Lian*		Run		1		Run 2		Concordant
Fibroblast ID	gDN	JA ID	Genotype	enotype Allele 1, 2		Allele 1, 2		Allele 1	Allele 2		Allele 1		Allele 2	
GM03132	NA03132		<2000	5, 2078 ±217				5		>200	5		>200	Yes
GM03696	NA03696		<1000	12, 697 ±13		12, >165/ >180*		12		>200	12	>200		Yes
GM03697	103697 NA03697		<500	12, 412 ±33				12		>200	12	>200		Yes
GM03756	'56 NA03756		<500					13		>200	13	>200		N/A
GM03759	759 NA03759		?/2000					14		>200	14	>200		N/A
GM03991	991 NA03991		?/~50-80					14	110		14	108		N/A
GM04567	NA04567		700	21, 637 ±33		21, >180		21	>200		21	>200		Yes
GM04648	NA04648		1000	5, 1008 ±49		5, >180		5	>200		5	>200		Yes
GM05152	NA05152		1500	5, 1621 ±30				5	>200		5	>200		Yes
GM05164	NA05164		340	22, 377 ±53		21, >180		21	>200		21	>200		Yes
GM06075	NA06075		66	12, 55, 70 ±0.9		12, 55, 71		12	56, 71		12	56, 71		Yes
GM12878	NA12878		Normal					5		13	5	13		N/A
GM23256	NA23256		160-170					25	101,	135, >200	25	100, 134, >200		0 N/A
GM23265	NA23265		50-60	12, 75		12, 76-77		12	6	63*, 75	12	63*, 75		Yes+
GM23299	NA23299		90-100					22		>200	22	>200		N/A
GM23300) NA23300		150-160			5, >180		5		>200	5	>200		Yes
GM23376	NA23376		CNBP exp.					20		22	20		22	N/A
GM23378	123378 NA23378		80-90	22, 138 ±5		22, 129	-132 22		7	'5*, 126 22		75*, 126		Yes+
Blood and Buccal			Run 1		Run 2		Cell				tun 1		Rún 2	
		Allele 1 Allele 2		Allele 1		llele 2				Allele 1	Allele 2		Allele 1	Allele 2
Donor 1		5	Homozygo	us 5	Hor	Homozygous		RU001		12	14		12	14
Donor 2		5	Homozygo	us 5	Homozygous		RU002			11	Homozygous		11	Homozygous
Donor 3		11	22	11		22		RU003		5	Homozygous		5	Homozygous
Donor 4		12	13	12		13		RU004		13	26		13	26
Donor 5		10	14	10		14	RU005			11	13		11	13
Donor 6		11	12	11		12	RU006			5	12		5	12
Donor 7		13	14	13		14		RU007		6	12		6	12
Donor 8		12	21	12		21		RU008		5	13		5	13
Donor 9		13	14	13		14		RU009		5	13		5	13
Donor 10		5	20	5		20		RU010		12	13		12	13
Donor 11		5	12	5		12		RU011		5	13		5	13
Donor 12		5	11	5		11								
Donor 13		5	11	5		11								

Figure 1. Single-tube, three-primer DMPK PCR/CE assay design and representative data. (A) The prototype assay consists of two gene-specific primers where the reverse primer is labeled with a FAM, and one repeat primer that can hybridize and prime anywhere in the repeat region. The assay produces two complementary data outputs in a single-tube: gene-specific (GS) peaks provide sizing of normal and expanded alleles up to 200 CTG, whereas short and long alleles are either enumerated or flagged by repeat-primed (RP) peaks. (B) Normal sample where both GS and RP peak profiles agree that the sample contains alleles of 5 and 13 repeats. (C and D) Expanded samples display one normal allele with sizing based on GS and RP peak profile agreement, and an expansion with >200 repeats based on the RP peak profile. Also unique to expansions >200 is a peak buildup at ~1030bp (data not shown).

RESULTS

Figure 2. The DMPK PCR/CE assay workflow is streamlined from sample-to-answer. The assay can be performed with a turnaround time of \sim 3.5 hr for 24 samples. Total hands-on time is \sim 1 hr.

*Research Use Only – Not For Use In Diagnostic Procedures

*Preliminary research data. The full performance characteristics of this assay have not yet been established. Presented at ESHG 2017 - P10.40D Figure 4. Three-primer DMPK PCR report \geq 2.5% mass fraction of an expanded sample in the background of 97.5% of an unexpanded sample. A series of admixtures (C-F) were created to evaluate the assay's analytical sensitivity. An expanded gDNA (A; NA23265; 12, 63/75) was titrated to 2.5% mass fraction of an unexpanded gDNA (B; RU002; 11/11). The expanded allele was detected at the 2.5% level (72 RFU).

CONCLUSIONS

- We report the first single-tube, long-read PCR technology that can resolve *DMPK* zygosity, genotype alleles up to 200 repeats, and flag large expansions with ≥2000 repeats.
- The method sizes expanded alleles from the equivalent of 2.5% of cells, shows between run repeatability within 1-2 repeat units, and is applicable to both blood and buccal specimens.
- The PCR/CE assay requires ~1 hr of hands-on time for a 24-sample batch and significantly reduces the need for SB analysis by accurately differentiating unexpanded and expanded alleles, including those that may be associated with DM1 severity.

References

- 1. Kamsteeg E. J., et al. (2012) European Journal of Human Genetics 20:1203–1208.
- 2. Suominen T., et al. (2011) European Journal of Human Genetics 19:776–782.
- 3. Kalman, L., et al. (2013) Journal of Molecular Diagnostics 15(4):518-525.
- 4. Lian, M., et al. (2015) Journal of Molecular Diagnostics 17(2):128–135.
- 5. Prior, T. W. (2009) Genetics in Medicine 11(7):552–555.

